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David has over 20 years of experience in mixed-signal and embedded system design. He was with 
Kapik for 11 years, where he served as Senior System-Architect and Principal Engineer and led the 
digital design team. In 2018, he joined Intel's Mixed Signal-IP Group as Senior Systems Engineer, 
where he was responsible for adaptation algorithm development for the multi-standard SerDes. Ph.D, 
M.A.Sc., and B.A.Sc. from the University of Toronto.

SeriaLink Systems is a consulting team focusing on system modeling of high-speed serial links, IBIS 
AMI modeling, model correlation and system validation. SeriaLink Systems is working on building a 
configurable modeling flow to support SerDes projects through their entire life cycles: from architecture 
definition, through analog and digital design, to design validation
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§ Legacy-based SerDes used analog circuits for RX equalization
§ Digital subsystem used for post-equalization deserialization, adaptation control, analog calibration
§ Digital/analog interaction mainly one-way: consumer/producer type of interaction

Motivation: Legacy SerDes
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§ Modern SerDes are increasingly mixed-signal: equalization is split between analog and digital domains
§ Closed-loop analog/digital interaction is increasing, e.g., CDR loop crosses digital/analog boundary 2×
§ Digital systems (not shown) control calibration tuning of analog sub-systems as well
§ Digital/Analog validation becomes increasingly more important

Motivation: SerDes Complexity is Increasing
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§ Exponentially increasing 
design costs

§ Nano-scale technologies 
are not analog friendly
o Reducing voltage headroom
o Increasing process variation
o Increasing layout-dependency

§ 1st-time success is critical, 
hence verification is critical

Increasing Design Costs
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IBS, “As Chip Design Costs Skyrocket, 3 nm Process Node Is in Jeopardy,” 2020.
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§ “The devil is in the details” – Failures often occur at digital/analog boundaries
§ “If it’s not tested, it doesn’t work” – Mixed-signal simulations test domain crossing interfaces
§ Failures are costly

o Low-end: metal mask change to fix interface issues (optimistic)
o High-end: missed market window, squandered investment, unhappy customers, and tarnished reputation

Motivation: Tiny Mistakes à Huge Problems
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§ Unit testing
o Block functionality verified against specifications

§ In-situ testing
o Blocks tested in groups within the same domain

§ Interface testing
o Exercises inter-domain connectivity/functionality

§ Validation time is limited
o Analog circuit simulations are CPU intensive
o Behavioral models accelerate M/S validation

Motivation: Solution is to Test Everything
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§ Behavioral models are created late in the project lifecycle or are insufficiently representative
§ Behavioral models require manual design in a low-level language: SystemVerilog, C/C++, etc.

Motivation: Typical SerDes Project Lifetime
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§ Behavioral models are created late in the project lifecycle or are insufficiently representative
§ Behavioral models require manual design in a low-level language: SystemVerilog, C/C++, etc.

Motivation: Typical SerDes Project Lifetime
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§ Model use throughout a SerDes development life-cycle and the ABCs of SerDes models

§ Generating B-models from A-models

§ C-model design and characterization

§ Updating A-model based on C-model characterization

§ Automatic B-model refresh from A-model

Outline
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§ Architectural models validate system 
functionality with different channels

§ Behavioral models are used to stand-in 
for C-models to accelerate validation

§ Circuit models make use of circuit 
simulators and embody the low-level 
details of the SerDes design

§ ABC models are (re)used throughout a 
SerDes development

ABC Models
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§ Requirements and standards drive 
architectural definition

§ Architectural choices are explored 
using A models

§ A models embody design requirements 
and target functionality/behavior

§ Specifications are provided to circuit 
designers for implementation

Models Usage Scenarios
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§ Meeting specs may not be feasible
o Voltage headroom limitations
o Technology limitations
o Power/area limitations

§ Design limitations are encountered 
during circuit design, but design 
tradeoffs are explored using A models

§ For tradeoff analysis, A model is 
updated to match circuit performance

Models Usage Scenarios (2)
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§ Behavioral models are manually created
o Susceptible to human errors
o Questionable model quality (what’s important vs what is not)
o Requires manual maintenance

§ Correlation to circuit models is required

§ Enables top-level design vs spec. validation

§ IBIS-AMI models = behavioral models

Models Usage Scenarios (3)
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§ Generated near project start based on specifications embodied in architectural models
§ B-models updated and refined as project evolves based on C-model characterization

Validation Shift-Left: Early B-Models

17

Design & Validation

time

System

Digital

Analog

Architectural
exploration

Block 
Interface 

Defn

Ongoing performance 
evaluation

AMS 
Validation

Top-level
Validation

Design & Characterization

Trade-off & Performance 
evaluation

Si
gn

-o
ff

Block 
Interface 

Defn

Beh. model

Circuit
(Spice)

A B
C



Information Classification: General

§ Generated near project start based on specifications embodied in architectural models
§ B-models updated and refined as project evolves based on C-model characterization

Validation Shift-Left: Early B-Models
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§ Model use throughout a SerDes development life-cycle and the ABCs of SerDes models

§ Generating B-models from A-models

§ C-model design and characterization

§ Updating A-model based on C-model characterization

§ Automatic B-model refresh from A-model

Outline
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§ Matches C-model hierarchy to allow for future block refinement and export

A-Model Hierarchy: Receiver Example
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§ An LTI filter – from the system POV

§ A continuous-time filter is fully parametrized by 
pole and zero location, and its gain
o Approach used by COM

o Tuning affected by changing pole or zero locations

§ Represented in discrete-time via
o bilinear transform à IIR implementation
o Sampled impulse response à FIR implementation

COM-Based CTLE Definition
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§ Circuit implementation is complex
o Continuous-time filtering via analog circuits
o Tuning via digitally controllable resistor/capacitor banks

§ Imperfect and variable circuit characteristics
o Additive circuit noise
o Dynamic range compression due to voltage headroom limits
o Transistor mismatches lead to unwanted offsets

o Offsets can be removed via digital trimming

§ Required behavior is captured by A-model
o Some effects do not need to be modeled: e.g., offset and 

offset-compensation à yet, residual offset is important

CTLE Circuit Block Diagram
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§ Family of digitally selectable filter responses
o Boost at 20GHz
o DC attenuation: -20 to 0dB in 1dB steps

§ Input referred noise needs to be estimated
o It is shaped by the CTLE frequency response

§ LTI behavior is captured. What about non-
linear effects?

A-Model Target CTLE Frequency Response
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§ CTLE can be input, or output voltage limited
o Depending circuit topology chosen, biasing levels, etc.
o Limiting impacts voltage input/output swing

§ CTLE designed as a differential circuit
o Soft limiting – as differential pair becomes less linear
o Approximated by arctangent function

§ Expected to be output limited

CTLE Output Nonlinearity Model
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§ 3 constituent pieces
o Core functionality – based on A-model
o Interface gasket – re-usable RTL
o Digital calibration engine – synthesizable RTL

§ Single-ended to differential conversion 
performed by re-usable SystemVerilog

§ DAC and slicer abstracted in example 
B-model – can be exported A-models

§ If circuit implementation changes, then 
A-model functionality will change

Complete CTLE B-Model
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§ Instantiates
o Digital calibration engine – synthesizable RTL
o Core filter behavior – exported A-model

§ SE-to-diff. conversion – 3-lines of code

§ DAC and comparator modelled directly

§ The rest is port and net definitions

§ Offset & common-mode are parameters

SystemVerilog Gasket
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module ctle #(
parameter offset = 0.0,
parameter cm = 0.5

) (
input arst_b, // Asynchronous reset
input cm_clk, // common-mode compensation clock
input cm_cal_en, // common-mode calibration enable
input real inp, // CTLE differential input +
input real inm, // CTLE differential input -
input byte unsigned boost, // boost setting
output real outp, // CTLE differential output +
output real outm // CTLE differential output -

);

real in, offset_comp, out;
reg out_q;
wire signed [7:0] offset_comp_dig;

always @(*) begin: CTLE_step
offset_comp = offset_comp_dig * 0.125/128; // offset DAC model

in = inp - inm + offset - offset_comp;
outp = cm + out/2;
outm = cm - out/2;

end

// Clocked comparator
always @(posedge cm_clk)

out_q <= cm_cal_en? outp > outm: 1'b0;

// CTLE digital offset calibration
ctle_cm_cal #(.M(8), .N (12)) ctle_cm_cal (.arst_b(arst_b), .clk(cm_clk),

.en(cm_cal_en), .sense(out_q), .comp(offset_comp_dig));

// CTLE B-model core (based on exported A-model)
CTLE_dpi ctle_core(.ctle_in(in), .cfg_sel(boost), .out(out));

endmodule
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§ Model use throughout a SerDes development life-cycle and the ABCs of SerDes models

§ Generating B-models from A-models
o Correlation of A- and B-model

§ C-model design and characterization

§ Updating A-model based on C-model characterization

§ Automatic B-model refresh from A-model

Outline
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A- vs B-model: Step Response

28

§ Step response fully characterizes CTLE

§ 100mV step does not result in output-limiting

§ Responses for all CTLE boost settings shown

§ No distinguishable difference between A and B models

A-model

B-model
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§ Simulink and Verilog outputs overlaid.  Matched across amplitude and boost settings.

A- vs B-model: Large/Small Amplitude PRBS
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§ Input-referred offset is a DC phenomenon

§ Measured at CTLE output with shorted inputs

§ CTLE output is asynchronously sampled

§ ±1 sample decisions are digitally integrated

§ Top N integrator bits drive compensation DAC

§ Compensated when ±1 are equally probable

CTLE Offset Calibration Engine
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module ctle_cm_cal #(
parameter M = 8,
parameter N = 16

) (
input arst_b, // Asynchronous reset
input clk,    // clock
input cal_en, // engine enable
input sense,  // comparator sense output
output signed [M-1:0] comp); // compensation code

reg signed [N-1:0] control;

assign comp = control[N – 1 -: M];

always @(posedge clk, negedge arst_b)
if (~arst_b)

control = {N{1'd0}};
else

control = control + (cal_en? (sense? 1'sd1: -1'sd1): 1'd0);
endmodule
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§ Verilog-based testbench
o Supplies a random offset to CTLE gasket
o Drives CTLE inputs to common mode
o CTLE input-referred noise is added

§ Ironically:
o Got the feedback polarity wrong!
o Didn’t account for boost dependent DC attenuation
o Both debugged with early CTLE B-model

CTLE Offset Calibration
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§ Model use throughout a SerDes development life-cycle and the ABCs of SerDes models

§ Generating B-models from A-models

§ C-model design and characterization

§ Updating A-model based on C-model characterization

§ Automatic B-model refresh from A-model

Outline
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§ Flow demonstrated via simplified CTLE circuit

§ C-model characterized via simulations
o AC simulations to get frequency dependent response
o DC simulations to get large-signal compression
o MC simulations to measure expected input-offset
o Noise simulations to determine input-referred noise
o etc.

§ Analog simulation results are used to refine A-model

CTLE C-Model
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Desired vs Simulated Freq. Response

34

§ Visible disparity used to highlight change due to A-model refresh

COM Target Response Simulated C-model
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§ Differential DC sweep about common mode

§ Simulated VOUT vs VIN curve normalized by DC 
gain to get input or output limiting

§ Plot shows CTLE is input limited, rather than 
output limited

Simulated Large Signal Compression
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§ The simulated CTLE offset is within the offset compensation range (±100mV)
§ Information can used to decrease the feedback DAC dynamic range: no impact on digital

Simulated CTLE Input-Referred Offset
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CTLE offset for 0 boost setting
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§ Model use throughout a SerDes development life-cycle and the ABCs of SerDes models

§ Generating B-models from A-models

§ C-model design and characterization

§ Updating A-model based on C-model characterization

§ Automatic B-model refresh from A-model

Outline
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§ Simulated input limiting used to 
configure saturating amplifier

§ Rational fit used to match simulated 
frequency response

o Compact gain, pole & zero representation

§ GPZ matrix used to configure CTLE 
model

A-Model Update
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model

A-Model Update
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§ Simulated input limiting used to 
configure saturating amplifier

§ Rational fit used to match simulated 
frequency response

o Compact gain, pole & zero representation

§ GPZ matrix used to configure CTLE 
model

A-Model Update
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§ PRBS sequence used to correlate C-model to A-model behavior
§ Well matched, but could do better by modeling output limiting behavior as well

C-to-A model Correlation
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§ Model use throughout a SerDes development life-cycle and the ABCs of SerDes models

§ Generating B-models from A-models

§ C-model design and characterization

§ Updating A-model based on C-model characterization

§ Automatic B-model refresh from A-model

Outline
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How do we refresh the B-Model
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How do we refresh the B-Model
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§ Very well-matched behavior
§ Improvements in C-to-A correlation would be manifested in B-model as well

B-to-A Model Correlation
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§ Initial A-models embody circuit specs.

§ Demonstrated flow for a CTLE
o Early B-model based on architectural models
o C-model was designed and characterized
o Updated A-model based on simulation data
o Regenerated updated B-model

§ Enables validation shift-left
o Earlier start
o Better test coverage
o Higher sign-off confidence

Conclusion
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Follow up with us after the conference

§ Engage with us info@serialinksystems.com

§ Visit us at www.serialinksystems.com
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