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▪ Data rates in serial link systems keep growing, reaching 100 Gb/s and beyond

▪ Channel losses and higher-order modulation (PAM4) necessitate more extensive equalization

▪ ADC-based SerDes architectures are becoming prevalent

▪ Equalization is divided between analog and digital domains

▪ This allows for extensive digital equalization that scales well with process nodes

▪ Digital equalization leads to a deviation from conventional (non-ADC-based) SerDes

▪ IBIS-AMI models remain de-facto technical link between SerDes vendors and system integrators

▪ IBIS-AMI modeling relies on conventional (non-ADC-based) architectural assumptions

▪ Architectural misalignments make it challenging to build IBIS-AMI models for ADC-based SerDes

▪ What are these challenges? What are possible ways to address these challenges?

Motivation
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▪ Decouple model from simulator by standardizing the interface

▪ Decision point: equalized analog waveform at M samples per UI

▪ Simulator evaluates link margin in statistical and time domains

▪ Sampler performance is communicated through margin/eye mask requirements

▪ Simulator accounts for additional noise and jitter sources

IBIS-AMI Framework
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▪ Time-interleaved (multi-path) ADC takes 1 sample per UI and de-muxes samples

▪ Mueller-Müller baud-rate CDR recovers clock from equalized ADC samples

▪ FFE, DFE, CDR are all in a DSP block that operates on de-muxed data, 0.5-1.0 GHz

▪ This does not fit well into IBIS AMI framework

ADC-Based SerDes Topology
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COM as SerDes Definition Tool
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Statistical 
Simulation

Channel
Models

Spec 
parameters

Parametrized
TX/RX Model

SNR Margin
Pass/fail

MATLAB

PROS

▪ Vetted by a large number of experts

▪ Generic parametrized model

▪ Spec details come from spreadsheet

▪ Runs in MATLAB, code is available

▪ Quick simulation iterations

CONS

▪ Lacks ADC, non-linearities

▪ Lacks clock recovery details

▪ Non-expandable for detailed modeling

▪ No time domain effects captured

▪ Intended for analog architectures
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COM Implementation Margin
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▪ Similar to IBIS-AMI, COM was intended for conventional analog-centric SerDes architectures

▪ COM uses a fully-equalized pulse response as a starting point for SNR analysis

▪ Some non-linear and time-varying (non-LTI) effects are accounted for as SNR penalty

▪ However, COM abstracts away SerDes implementation details

▪ COM focuses on equalization performance of the reference SerDes model

▪ Digital FFE and DFE are approximated as a full-rate equalizers

▪ As a result, a fully-equalized pulse response is available in COM

▪ ADC-related performance penalty is covered by the implementation margin

▪ Can we build ADC-based IBIS-AMI models using a similar approach?

▪ Can we add ADC performance penalty explicitly in time domain simulations?

COM and ADC-based SerDes Architectures

12



Information Classification: General

▪ Includes same components as COM reference TX, supports statistical and time domain simulations

▪ COM-parametric IBIS-AMI TX model with two intended use cases

▪ Can be configured to represent a standard-compliant TX

▪ Can be configured to represent measured TX performance

TX Model Block Diagram
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▪ Statistical

▪ Recover clock phase from pulse response with MM CDR

▪ Adapt equalization: CTLE, FFE, DFE

▪ Re-adjust recovered clock phase after adaptation

▪ Time domain

▪ ADC is a time-agnostic quantizer

▪ Mueller-Müller CDR runs continuously, maintains phase lock

▪ Equalization parameters are constant during transient simulation

COM-Representative ADC-Based RX Model
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▪ A script converts COM CTLE definition into GPZ matrices for CTLE stages

▪ Automatically update block properties in Simulink and range of AMI parameters

▪ In a similar way, CTLE can be configured to represent actual circuit performance

CTLE Configuration
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Simulink model

H_hp

High-pass

CTLE H_r

Boost RX BW

MATLAB script

% General
COM.f_b     = 53.125*GBps  ; % Baud rate               , Baud/s

% CTLE
COM.f_r     = 0.75         ; % RX BW filter            , Frac. of f_b
COM.g_DC    = -20:1:0      ; % CTLE DC gain            , dB
COM.f_z     = COM.f_b / 2.5; % CTLE zero   frequency   , Hz
COM.f_p1    = COM.f_b / 2.5; % CTLE pole 1 frequency   , Hz
COM.f_p2    = COM.f_b      ; % CTLE pole 2 frequency   , Hz
COM.g_DC_HP = -6:1:0       ; % High-pass DC gain       , dB
COM.f_HP_PZ = COM.f_b /80.0; % High-pass pole/zero freq, Hz

GPZ_HP GPZ_CTLE GPZ_HR
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CTLE Set of Transfer Functions
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%% COM parameters

COM.f_b = 53.125*GBps ; 

COM.g_DC = -20:1:0       ;

COM.f_z = COM.f_b / 2.5 ;

COM.f_p1 = COM.f_b / 2.5 ;

COM.f_p2 = COM.f_b ;

COM IBIS-AMI
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▪ Non-linearity is added to the data path between CTLE and ADC

▪ ADC is a quantizer, need voltage (not bits) at output to play well with IBIS AMI flow

▪ Resolution and dynamic range are the ADC parameters

Non-Linearity and ADC
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%% ADC params

ADC.res   = 4     ; % bits

ADC.range = 250*mV;

%% Non-Linearity params

NL.VinVout = [

-0.60  -0.2459

-0.55  -0.2439

-0.50  -0.2410

...

0.60   0.2459];
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▪ Use equalized pulse response to guide the adaptation

▪ Using Mueller-Müller phase detection for FFE & DFE zero-forcing

▪ FFE is “aware” of DFE: FFE brings Tap 1 to be within DFE range, similar to COM

Adaptation in Statistical Domain
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▪ RX noise and jitter can be added by the simulator to RX model outputs

▪ This impacts eye margins calculated by the simulator

▪ However, RX noise is not visible to SNR monitor inside RX

▪ We would like to account for output-referred noise for adaptation and correlation

▪ Therefore, input-referred noise needs to be added to the model

RX Noise Impact on SNR
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▪ Input noise

o White noise up to simulation BW

o Noise PSD is a parameter in COM spreadsheet, eta_0

▪ Output noise

o Apply linear EQ to filter noise

o Integrate filtered noise in frequency to get RMS value

o Output RMS noise degrades adaptation FoM (SNR)

▪ However…

o Adaptation is done in statistical part of the model

o Statistical domain is intended for impulse processing

o Need to get output noise PSD using only impulse processing

RX Noise in Statistical Adaptation
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▪ Use a unity impulse to “probe” response of linear EQ blocks: CTLE, VGA, FFE

▪ FFT to convert noise path IR to frequency domain

▪ Scale noise TF by input PSD, integrate up to 100 GHz to get output noise RMS

▪ This noise methodology correlates well with COM and time domain simulations

RX Noise in Statistical Adaptation
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▪ Converting noise path IR to frequency domain after every equalization stage

▪ This illustrates noise shaping progression through the RX

RX Noise in Statistical Adaptation
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▪ Measures SNR at UI centers, supports NRZ and PAM4

▪ Drives adaptation in statistical domain; correlation parameter with COM in time domain

▪ Used for post-Si SNR correlation with SerDes IP

SNR Measurement Block
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▪ Since ADC is modeled as a blind oversampling quantizer, the eye diagram is available (similar to COM)

▪ Only vertical eye opening (amplitude histogram) at the sampling instance carries quantitative information

▪ Horizontal eye opening (time histogram) carried only qualitative information in this eye diagram

Eye Diagram in COM-Representative Models

24

Quantitative

Qualitative



Information Classification: General

▪ Motivation

▪ ADC-Based IBIS-AMI Modeling Challenges

▪ ADC-Based IBIS-AMI Modeling Methodologies

▪ COM-Representative ADC-Based Models

▪ Architecturally-Representative ADC-Based Models

▪ Maximum Likelihood Sequence Estimation (MLSE) Models

▪ SNR-Centric Model Correlation Methodology

▪ Conclusion

Outline

25



Information Classification: General

▪ Analog equalization, CTLE & VGA, operates on continuous-time waveform

▪ Digital equalization, FFE & DFE, operates on discrete-time samples at UI centers

▪ Partially-equalized analog waveform needs to be sampled in time, and converted to digital representation

▪ For practical DSP implementation, it operates on frames of parallel samples at a lower frequency

ADC-based RX Block Diagram
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▪ N time-interleaved ADCs sample at the rate of 1/N each, requiring N-phase recovered clock 

▪ ADC samples capture information at UI centers, discard the rest of the waveform information

▪ Time interleaving depth trades off ADC operating speed with circuit and clocking complexity

ADC Time Interleaving Depth
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▪ N samples at ADC output are demultiplexed into frames of K parallel samples

▪ Digital equalization in DSP operates on sample frames at the rate of 1/K with respect to baud rate

▪ Demultiplexing trades off DSP operating speed with data path latency, and clock recovery dynamics

Sample Demultiplexing: 4:8 Ratio
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Sample Demultiplexing: 6:64 Ratio, 875 MHz Output
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Latency = 100 UIs = 1.8 ns
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▪ Parallel processing adds complexity to Simulink models

▪ Exploring key design parameters is difficult in Simulink

▪ Proposed model enables low-effort parametric design-space exploration

ADC-Based RX Block Interfaces
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▪ Fully-equalized continuous-time waveform does not exit in ADC-based RX, cannot construct an eye diagram

▪ Instead, fully-equalized UI-center samples are available, in frames of K-samples at 1/K rate – s_dfe

▪ Full-rate clock that triggers a samples does not exist either

▪ Instead, 1/N rate N-phase clock triggers the ADC at cumulative rate of 1 sample per UI – ck_rec

▪ How to interface this with SI simulators that expect a fully-equalized waveform along with a full-rate clock?

IBIS-AMI Interface with ADC-based RX
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▪ Multiplex frames of equalized samples, s_dfe, into baud-rate sequential samples, s_out, still at 1 S/UI

▪ Up-sample to required number of samples per UI, M; amplitude remains constant within every UI

▪ Output waveform, wave_out, is compatible with IBIS-AMI requirements, but carries no timing information

IBIS-AMI Bridge
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▪ RX model captures all architectural and implementation details without IBIS-AMI constraints

▪ IBIS-AMI bridge interfaces the detailed RX model with SI simulators

▪ Only vertical eye opening (amplitude histogram) is available, consistent with ADC-based architectures

Architecture-Representative ADC-Based RX Model
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▪ Conventional equalization cancels ISI, discarding received pulse energy outside the symbol boundaries

▪ MLSE leverages residual ISI energy to improve SNR and BER

▪ Pulse at MLSE input needs to contain known (controllable) amount of ISI

Maximum Likelihood Sequence Estimation

35
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▪ MLSE is a digital algorithm that operates on partially-equalized received samples, outputs data decisions

▪ FFE is configured to drive equalization towards a target pulse as opposed to zero ISI

▪ Since MLSE output has no timing or residual ISI (data symbols only), clock recovery loop uses FFE output

RX with MLSE Block Diagram
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▪ Significant 1st post-cursor ISI in pulse response leads to level separation in eye diagram

▪ +1 data symbol corresponds to two levels: +cursor ± post-cursor = +1.00 ± 0.25 amplitudes

▪ –1  data symbol corresponds to two levels: –cursor ± post-cursor = –1.00 ± 0.25 amplitudes

From Pulse to Eye Representation
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▪ Eye diagram can be represented as a trellis segment

▪ Vertices represent data symbols, edges represent transitions between symbols

▪ Resulting amplitudes are assigned to trellis edges as expected amplitudes at destination nodes

From Eye to Trellis Representation
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▪ Partially-equalized waveform (sequence of samples) at FFE output forms a path through a trellis diagram

▪ Deviation of observed from expected sample amplitudes forms edge cost or penalty

▪ Trellis path with lowest cost (penalty) corresponds to a data sequence estimate with maximum likelihood

▪ Algorithms similar to Viterbi are frequently used for trellis traversal

Traverse Trellis for Sequence Estimation
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▪ Larger ISI in target pulse leads to more significant eye closure, this NRZ eye resembles PAM4 eye

▪ Even in noise-free case, SI simulators are unable to use MLSE input eye for link performance evaluation

▪ This resemblance with PAM4 illustrates that MLSE allows to operate with lower equalization BW margins

NRZ Eye at MLSE Input with [1.0 0.5] Target Pulse
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▪ Signal (eye) at MLSE input is not usable for link performance evaluation in SI simulators due to residual ISI

▪ MLSE output consists of a sequence of data symbols as opposed to equalized samples

▪ For IBIS-AMI compliance, construct output waveform from the MLSE output symbols

▪ This output carries neither timing nor amplitude information for link performance estimation

▪ MLSE output eye carries symbol error information, while the RX model can provide estimated SNR

MLSE Eye Diagram
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Link Correlation: SNR/BER
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▪ Measurable: 

▪ Raw BER is measurable in lab using BIST by 

counting errors between sent and received 

symbols

▪ SNR can be simulated/calculated from 

IBIS-AMI simulation

▪ BER indirectly mapped from SNR using 

relationship

PAM4 signaling BER/SNR relationship

𝐵𝐸𝑅 =
3

8
𝑒𝑟𝑓𝑐

10
𝑆𝑁𝑅
10
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TX Correlation
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Link Correlation: Setup
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Link Simulation with RX Noise Sweeps
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RX IBIS-AMI model block diagram
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Final Model to Lab Correlation
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RX model noise impairment is 

calibrated to match the performance 

of the test chip across the loss range

Predictive IBIS-AMI model
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MLSE IBIS-AMI Model
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MLSE IBIS-AMI Simulation
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▪ Explored challenges of IBIS-AMI modeling for ADC-based SerDes architectures

▪ Proposed three IBIS-AMI modeling methodologies for ADC-based SerDes

▪ COM-Representative ADC-Based Models

▪ Architecturally-Representative ADC-Based Models

▪ Maximum Likelihood Sequence Estimation (MLSE) Models

▪ Explored implication of these methodologies on model-simulator interface

▪ Proposed SNR-based IBIS-AMI correlation methodology

▪ Used proposed methodologies to build and correlate models for 1-112 Gb/s multi-standard SerDes

▪ Two RX noise sources were used to drive model correlation

o Loss-dependent noise at CTLE input

o Loss-independent noise at ADC input

▪ Resulting predictive IBIS-AMI models cover SerDes IP performance across measured PVT variation

Conclusion
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MORE INFORMATION

▪ www.serialinksystems.com

▪ info@serialinksystems.com

▪ Supporting material

▪ https://www.mathworks.com/help/serdes/ug/adc-ibis-ami-model-based-on-com.html

▪ https://www.mathworks.com/help/serdes/ug/architectural-112g-pam4-adc-based-serdes-model.html
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